首页> 外文OA文献 >Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
【2h】

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

机译:双曲守恒律的基本非振荡方案和加权基本非振荡方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.
机译:在这些讲义中,我们描述了双曲守恒律和相关Hamilton-Jacobi方程的ENO(基本非振荡)和WENO(加权基本非振荡)方案的构造,分析和应用。 ENO和WENO方案是针对包含不连续性的分段光滑解的问题而设计的高阶精确有限差分方案。关键思想在于近似水平,其中使用非线性自适应过程来自动选择局部最平滑的模具,从而尽可能避免插值过程中的交叉不连续性。 ENO和WENO方案在应用中已经非常成功,特别是对于同时包含冲击和复杂的光滑解结构的问题,例如可压缩湍流模拟和航空声学。这些讲义基本上是独立的。我们希望借助这些注释并在引用的参考文献的帮助下,读者能够理解算法并为应用编写代码。

著录项

  • 作者

    Shu, Chi-Wang;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号